468 research outputs found

    Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    Get PDF
    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials

    The rising tide of polypharmacy and drug-drug interactions:population database analysis 1995-2010

    Get PDF
    Background: The escalating use of prescribed drugs has increasingly raised concerns about polypharmacy. This study aims to examine changes in rates of polypharmacy and potentially serious drug-drug interactions in a stable geographical population between 1995 and 2010. Methods: This is a repeated cross-sectional analysis of community-dispensed prescribing data for all 310,000 adults resident in the Tayside region of Scotland in 1995 and 2010. The number of drug classes dispensed and the number of potentially serious drug-drug interactions (DDIs) in the previous 84 days were calculated, and age-sex standardised rates in 1995 and 2010 compared. Patient characteristics associated with receipt of ≥10 drugs and with the presence of one or more DDIs were examined using multilevel logistic regression to account for clustering of patients within primary care practices. Results: Between 1995 and 2010, the proportion of adults dispensed ≥5 drugs doubled to 20.8%, and the proportion dispensed ≥10 tripled to 5.8%. Receipt of ≥10 drugs was strongly associated with increasing age (20-29 years, 0.3%; ≥80 years, 24.0%; adjusted OR, 118.3; 95% CI, 99.5-140.7) but was also independently more common in people living in more deprived areas (adjusted OR most vs. least deprived quintile, 2.36; 95% CI, 2.22-2.51), and in people resident in a care home (adjusted OR, 2.88; 95% CI, 2.65-3.13). The proportion with potentially serious drug-drug interactions more than doubled to 13% of adults in 2010, and the number of drugs dispensed was the characteristic most strongly associated with this (10.9% if dispensed 2-4 drugs vs. 80.8% if dispensed ≥15 drugs; adjusted OR, 26.8; 95% CI 24.5-29.3). Conclusions: Drug regimens are increasingly complex and potentially harmful, and people with polypharmacy need regular review and prescribing optimisation. Research is needed to better understand the impact of multiple interacting drugs as used in real-world practice and to evaluate the effect of medicine optimisation interventions on quality of life and mortality.Publisher PDFPeer reviewe

    The PACE Study: A randomised clinical trial of cognitive activity (CA) for older adults with mild cognitive impairment (MCI)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research evidence from observational studies suggests that cognitive activity reduces the risk of cognitive impairment in later life as well as the rate of cognitive decline of people with dementia. The Promoting Healthy Ageing with Cognitive Exercise (PACE) study has been designed to determine whether a cognitive activity intervention decreases the rate of cognitive decline amongst older adults with mild cognitive impairment (MCI).</p> <p>Methods/Design</p> <p>The study will recruit 160 community-dwelling men and women aged 65 years of age or over with mild cognitive impairment (MCI). Participants will be randomly allocated to two treatment groups: non-specific education and cognitive activity. The intervention will consist of ten 90-minute sessions delivered twice per week over a period of five weeks. The primary outcome measure of the study is the change from baseline in the total score on the Cambridge Cognitive Score (CAMCOG). Secondary outcomes of interest include changes in memory, attention, executive functions, mood and quality of life. Primary endpoints will be collected 12, 52 and 104 weeks after the baseline assessment.</p> <p>Discussion</p> <p>The proposed project will produce the best available evidence on the merits of increased cognitive activity as a strategy to prevent cognitive decline among older adults with MCI. We anticipate that the results of this study will have implications for the development of evidence-based preventive strategies to reduce the rate of cognitive decline amongst older people at risk of dementia.</p> <p>Trial registration</p> <p>ACTRN12608000556347</p

    Carbogen breathing increases prostate cancer oxygenation: a translational MRI study in murine xenografts and humans

    Get PDF
    Hypoxia has been associated with poor local tumour control and relapse in many cancer sites, including carcinoma of the prostate. This translational study tests whether breathing carbogen gas improves the oxygenation of human prostate carcinoma xenografts in mice and in human patients with prostate cancer. A total of 23 DU145 tumour-bearing mice, 17 PC3 tumour-bearing mice and 17 human patients with prostate cancer were investigated. Intrinsic susceptibility-weighted MRI was performed before and during a period of carbogen gas breathing. Quantitative R2* pixel maps were produced for each tumour and at each time point and changes in R2* induced by carbogen were determined. There was a mean reduction in R2* of 6.4% (P=0.003) for DU145 xenografts and 5.8% (P=0.007) for PC3 xenografts. In all, 14 human subjects were evaluable; 64% had reductions in tumour R2* during carbogen inhalation with a mean reduction of 21.6% (P=0.0005). Decreases in prostate tumour R2* in both animal models and human patients as a result of carbogen inhalation suggests the presence of significant hypoxia. The finding that carbogen gas breathing improves prostate tumour oxygenation provides a rationale for testing the radiosensitising effects of combining carbogen gas breathing with radiotherapy in prostate cancer patients

    Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation

    Get PDF
    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation

    Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition

    Get PDF
    Glioblastoma multiforme (GBM) are resistant to TNFα-induced apoptosis and blockade of TNFα-induced NF-κB activation sensitizes glioma cells to apoptosis. As Casein kinase-2 (CK2) induces aberrant NF-κB activation and as we observed elevated CK2 levels in GBM tumors, we investigated the potential of CK2 inhibitors (CK2-Is) - DRB and Apigenin in sensitizing glioma cells to TNFα-induced apoptosis. CK2-Is and CK2 small interfering RNA (siRNA) reduced glioma cell viability, inhibited TNFα-mediated NF-κB activation, and sensitized cell to TNFα-induced apoptosis. Importantly, CK2-Is activated p53 function in wild-type but not in p53 mutant cells. Activation of p53 function involved its increased transcriptional activation, DNA-binding ability, increased expression of p53 target genes associated with cell cycle progression and apoptosis. Moreover, CK2-Is decreased telomerase activity and increased senescence in a p53-dependent manner. Apoptotic gene profiling indicated that CK2-Is differentially affect p53 and TNFα targets in p53 wild-type and mutant glioma cells. CK2-I decreased MDM2-p53 association and p53 ubiquitination to enhance p53 levels. Interestingly, CK2-Is downregulated SIRT1 activity and over-expression of SIRT1 decreased p53 transcriptional activity and rescued cells from CK2-I-induced apoptosis. This ability of CK2-Is to sensitize glioma to TNFα-induced death via multiple mechanisms involving abrogation of NF-κB activation, reactivation of wild-type p53 function and SIRT1 inhibition warrants investigation

    PREDIVAC: CD4+T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity

    Get PDF
    Background: CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge

    Vision Impairs the Abilities of Bats to Avoid Colliding with Stationary Obstacles

    Get PDF
    Background: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as ‘‘distress calls’ ’ of other bats, contributed to probabilities of collision. Methodology/Principal Findings: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. Conclusions/Significance: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlight
    corecore